

Wavelength Stabilized TD-56 Lasers

RPMC Lasers Inc.'s proprietary single-mode wavelength stabilized laser features high output power with ultra-narrow spectral bandwidth and a diffraction limited output beam. Designed to replace expensive DFB, DBR, fiber, and external cavity lasers, the Single-Mode Spectrum Stabilized Laser offers superior wavelength stability over time, temperature (0.007 nm/^oC), and vibration, and is manufactured to meet the most demanding wavelength requirements.

The TO-56 packaged product line comes standard with a circularized and collimated output beam, internal thermistor and ESD protection. Lasing wavelength can be accurately specified and repeatedly manufactured to within +/-0.1 nm upon request. The laser package is designed for OEM integration and is ideal for high resolution Raman spectroscopy, confocal microscopy, metrology and interferometry applications.

1 - Integral laser line filters for 633 nm, 638 nm, 785 nm, 808 nm, 830 nm and 1064 nm

Features

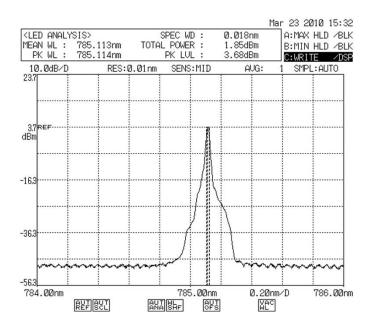
- High Power Single Frequency Output
- Narrow Spectral Linewidth (~100 kHz)
- Stabilized Output Spectrum (< 0.007 nm/°C)
- Gaussian TEM₀₀ Spatial Mode
- Circularized & Collimated Output Beam
- Integral ESD Protection & Thermistor
- Integral Laser Line Filter¹
- SMSR 70 dB w/ laser line filter (40 dB without)

Standard Wavelengths

780 nm

785 nm

808 nm


- 633 nm
 - 638 nm
 - n 🔹

830 nm

- 1053 nm
- 1064 nm

Custom wavelengths available

Typical Spectral Plot

Typical 785 nm SS Laser Spectrum

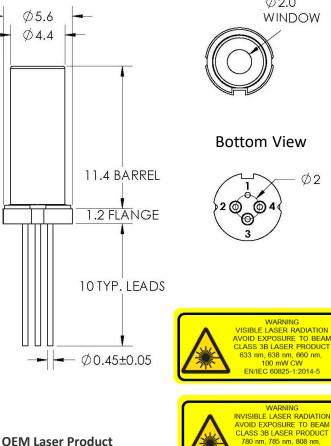
RPMC Lasers, Inc.

8495 Veterans Memorial Pkwy • O'Fallon, MO 63366 PH: 636-272-7227 • www.rpmclasers.com • info@rpmclasers.com

TO-56 Mechanical Specifications

General Optical Specifications			
Wavelength Tolerance	+/- 0.5 nm		
Spectral Linewidth (Δλ)	~ 100 kHz instantaneous		
Wavelength Stability Range	15 C - 45 C (optimal set point		
	must be determined for best		
	performance - see operational		
	notes below		
SMSR	35 -45 dB		
SMSR w/integral laser line filter	70 dB		
Power Stability	1% typical		
Polarization Extinction (PER)	>17 dB		
Polarization Orientation	Parallel to V-notches		
Spatial Profile	TEM00		
Beam Exit Angle	< 3 degrees		
Beam Quality (M-Squared)	< 1.5		
Beam Ellipticity	1.5:1		
Beam Divergence (Typical)	~ 2 mrad		
Deam Divergence (Typical)	~ 4 mrad for 785 nm		

Wavelength (nm)	Min. Power (mW)	Part number	Max Current, Voltage
633	15	R0633S50015B	100 mA, 3.0V
633	35	R0633S50035B	150 mA, 3.0 V
633	50	R0633S50050B	175 mA, 3.0 V
638	35	R0638S50035B	150 mA, 3.3V
638	60	R0638S50060B	170 mA, 3.3 V
780	100	R0780S50100B	180 mA, 2.2V
785	100	R0785S50100B	220 mA, 2.2V
808	100	R0808S50100B	200 mA, 2.2V
830	100	R0830S50100B	300 mA, 2.2V
1053	150	R1053S50150B	300 mA, 2.2V
1064	150	R1064S50150B	300 mA, 2.2V


Electrical Pinout		
Pin 1	LD Anode (+), Case Ground	
Pin 2	LD Cathode (-)	
Pin 3	Thermistor - 10kOhm @ 25 deg C	
Pin 4	Thermistor - 10kOhm @ 25 deg C	

Side View Ø5.6 Ø4.4 11.4 BARREL 1.2 FLANGE 10 TYP. LEADS

Top View

Ø2.0

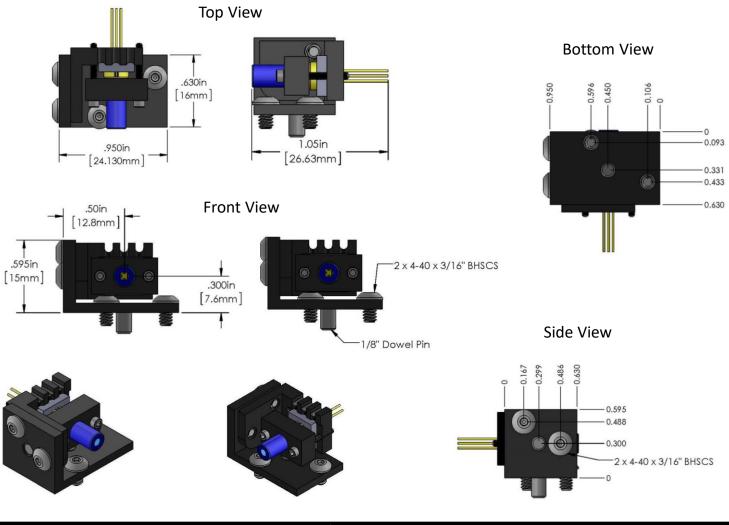
 ϕ_2

This laser module is designed for use as a component (or replacement) part and is thereby exempt from 21 CFR1040.10 and 1040.11 provisions.

WARNING

830 nm, 200 mW CW EN/IEC 60825-1:2014-5

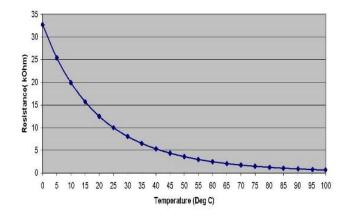
Operational Notes


- 1. Laser must be compression mounted on a Thermo-Electric Cooler (TEC) and heat sink to guarantee wavelength stable performance
- 2. Laser will operate in single frequency mode at set-points between 10 and 45 degrees, however, optimal operating set point must be determined for each laser diode to avoid mode-hopping (see note 4)
- 3. Do not retro-reflect beam! This can cause Catastrophic Optical Damage (COD) and is not covered under warranty
- To determine optimal operating point, plot output power vs temperature to determine where mode-hop locations are. Set 4. operating temperature halfway between mode-hops. This will ensure the most stable operation (RPMC can offer the option of determining this optimal operating point for each diode)
- RPMC can offer the TO-56 mounted with TEC and heat sink in our A-type gimbal (-GUTS option). See p.3 for drawings. 5.

RPMC Lasers, Inc. 8495 Veterans Memorial Pkwy • O'Fallon, MO 63366

PH: 636-272-7227 • www.rpmclasers.com • info@rpmclasers.com

TO-56 in "GUTS" Mount Mechanical Specifications



Thermistor

Formula for calculating T based upon Resistance 1/(C1+C2*LN(kOhm*1000)+C3*(LN(kOhm*1000))^3)-273.15

Plot of Temperature vs Resistance

Thermistor (Betatherm 10K3CG3) C1 0.00113 C2 0.000234 C3 8.78E-08

Temperature	Resistance
[C]	[kOhm]
100	0.68
95	0.78
90	0.91
85	1.07
80	1.25
75	1.48
70	1.75
65	2.08
60	2.49
55	2.99
50	3.6
45	4.37
40	5.32
35	6.54
30	8.05
25	10
20	12.5
15	15.7
10	19.9
5	25.4
0	32.7
v	JZ.1

All data and statements contained herein are subject to change in accordance with RPMC Laser Inc.'s policy of continual product improvement. No information contained herein is intended for use in connection with any contract except as may be first confirmed in writing by Innovative Photonic Solutions. The publication of information in this document does not imply freedom from patent or other rights of RPMC Lasers, Inc. or others.